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Glossary

Bayesian estimation: estimation of the complete probability distribution of

molecular rates and divergence dates, given the molecular sequence data. This

‘posterior distribution’ is proportional to the likelihood weighted by ‘prior’

distribution(s) that express our beliefs about the dates and rates in the absence

of the molecular sequence data under consideration.

Likelihood: probability of observing the sequence data given that it evolved

under a particular model with particular parameter values (e.g., with particular

rates and dates). Maximum Likelihood methods find the parameters values that

yield the highest likelihood for the data and model under consideration.

Molecular clock: in the broad sense, refers to molecular dating, but also refers

to the rate constancy assumption.

Molecular dating: estimating the date of divergence of two or more lineages by

comparing their DNA (or protein) sequence data.

Nonidentifiability: parameters in a model are said to be nonidentifiable if

different sets of parameter values account for the data with equal likelihood. In

molecular dating, rates and dates are nonidentifiable if each branch of a

phylogeny is assigned its own rate.

Penalized likelihood estimation: penalized likelihood methods, which are

closely related to Bayesian methods, weight the likelihood model of branch

lengths by a penalty function applying some data-independent constraints to

the parameter values.

Rate-smoothing assumption: assumption that rates of molecular evolution

changed gradually over the tree. Introduced by Sanderson [6], but similar

assumptions underlie many Bayesian implementations.
Molecular-dating techniques potentially enable us to

estimate the time of origin of any biological lineage.

Such techniques were originally premised on the assump-

tion of a ‘molecular clock’; that is, the assumption that

genetic change accumulated steadily over time. However,

it is becoming increasingly clear that constant rates of

molecular evolution might be the exception rather than

the rule. Recently, new methods have appeared that

enable the incorporation of variable rates into molecular

dating. Direct comparisons between these methods are

difficult, because they differ in so many respects. How-

ever, the assumptions about rate change on which they

rely fall into a few broad categories. Improving our under-

standing of molecular evolution will be an important next

step towards evaluating and improving these methods.

Molecular dating

The advent of molecular-dating techniques, which esti-
mate evolutionary timescales from comparisons between
DNA or protein sequences, has transformed many areas of
biology [1]. Such techniques offer us an insight into the
history of lineages with a poor or non-existent fossil record
(e.g. [2]). They have also been used to challenge important
evolutionary hypotheses successfully (e.g. suggesting a
more recent common ancestry between humans and
chimps than had been assumed from fossils alone [3,4]).
But molecular dates have also been controversial, par-
ticularly when they are at odds with other lines of
evidence, such as the fossil record (e.g. [5]).

To appreciate why molecular dating has been contro-
versial, consider in more detail what the process involves.
All molecular-dating methods convert measures of the
genetic distance between sequences into estimates of the
time at which the lineages diverged. The genetic distance
estimates require topology (the branching tree structure
of the relevant lineages) and branch lengths (estimates of
the number of substitutions that have occurred in each
lineage). To convert these into measures of time, the
methods also require one or more externally derived dates,
usually based on fossil or biogeographical evidence
(typically, these are treated as point estimates, although
increasingly, upper or lower bounds are used [6]). Finally,
to extrapolate from the ‘known’ dates to the rest of the
tree, molecular dating has commonly relied on the rate
constancy assumption (the assumption that molecular
evolution occurred at a steady rate over the whole tree).
The central role of this assumption is evident from the fact
that the term ‘molecular clock’, which in its broadest sense
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refers to the possibility of inferring age from genetic
distance, is also commonly used to refer to rate constancy.

Unfortunately, there is increasing evidence that the
assumption of rate constancy is often violated, and that
the DNA of even closely related species might evolve at
different rates [1,7–9]. This lack of rate constancy has
been called ‘the single most fundamental obstacle to deve-
loping an accurate estimate of times of origination’ [5].

Here, we review methods for dealing with rate hetero-
geneity in molecular dating, and pay particular attention
to those methods that incorporate multiple rates directly
into the estimation. First, however, consider a response
to rate heterogeneity that does not require the use of
variable-rate dating methods.
Excluding anomalous sequences

A common and reasonable response to rate heterogeneity
has been to try to identify those lineages with ‘anomalous’
rates, or those genes or sites that are most subject to rate
variation, and then exclude these from the analysis. Many
dating studies that assume rate constancy will be of this
type [10]. To identify rate-variable lineages, various tests
of rate constancy can be used [7,11–15]. In practice, there
are two possible difficulties with the exclusion approach.
First, some of the tests used have low power for the kind of
data typically used, and so only dramatic departures from
rate constancy are likely to be detected [16–20]. This low
power has serious implications, because any rate variation
Review TRENDS in Ecology and Evolution Vol.20 No.6 June 2005
Rate testing: methods for identifying lineages, or groups of lineages, whose

rate of evolution differs significantly from that of the rest of the tree.

. doi:10.1016/j.tree.2005.02.007

http://www.sciencedirect.com


Review TRENDS in Ecology and Evolution Vol.20 No.6 June 2005 321
that remains undetected can result in consistently biased
date estimates. Second, the exclusion approach is practical
only if rate variation is the exception rather than the
rule; otherwise, a large proportion of the sequences have
to be excluded.

The variable rate (so-called ‘relaxed clock’) methods
were developed in response to these difficulties. Although
there are many such methods, they can be classified into a
few broad types, as described in the following sections.
Table 1 summarizes the methods and the most important
differences between them.
Methods using a small number of rates

(local molecular clocks)

The first group of variable rate methods involves a rela-
tively straightforward extension of the conventional
constant-rate approach. These methods assume that dif-
ferent parts of the phylogeny are characterized by differ-
ent rates, or ‘local molecular clocks’. As long as the number
of rates assigned is small, they can be jointly estimated
with the divergence times, as is done with a single fixed
rate. If the number of rates is too large, however, then the
rates and dates become ‘nonidentifiable’ (i.e. an infinite
Table 1. Variable-rate molecular-dating methods

Method Branch

lengthsa

Node age

constraints

Rate

changec

T

Quartet method Substitution

model

Two fixed-point

calibrations

Local clocks (two

rates per quartet)

Q

Local molecular

clocks I

Substitution

model

Multiple fixed

point calibrations

Local clocks F

Local molecular

clocks II

Poisson

distribution

Bounds on

multiple nodes

Local clocks F

Local molecular

clocks III

Substitution

model

Various node age

priors

Local clocks V

Nonparametric

rate smoothing

(NPRS)

Fixed

estimates

Bounds on

multiple nodes

Rate-smoothing

penalty function

(Quadratic model)

F

Penalized

likelihood rate

smoothing

Poisson

distribution

Bounds on

multiple nodes

Rate-smoothing

penalty function

(Quadratic model)

F

Bayesian

estimation I

MVNb Node age prior

incorporating

bounds on

multiple nodes

‘Rate-smoothing’

prior (Stationary

Lognormal model)

F

Bayesian

estimation II

Substitution

model

Node age prior

with single fixed

point calibration

Various rate

change priors

F

Bayesian

estimation III

Substitution

model

Various node age

priors

Various rate

change priors

V

Huelsenbeck

et al.

Substitution

model

Single fixed-

point calibration

Compound

Poisson process

incorporating the

Gamma Multiplier

model

F

Heuristic rate

smoothing

(AHRS)

Stage 1:

MVN

Stage 2:

substitution

model

Multiple fixed-

point calibrations

Stage 1: rate

smoothing

(Stationary

Lognormal model)

Stage 2: local

clocks

F

Cutler’s method Gaussian

distribution

Bounds on

multiple nodes

Implicit in the

likelihood model

F

aSee Box 2.
bMVN, multivariate normal approximation of likelihood.
cSee Box 1.
dSee Box 3: ML, Maximum Likelihood estimate; MPL, Maximum Penalized Likelihood e
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number of rate and date combinations are equally prob-
able [14,21,22]). Because the number of rates is limited,
these methods face the fundamental difficulty of how and
where to place the rate changes.

The ‘quartet method’ [17,23] is one of the simplest local
clock methods. This method combines two pairs of species,
each of which has a known date of divergence. A rate can
be estimated for each pair, and this enables the date of the
divergence between the pairs to be estimated (Figure 1a).
Although the rate change is arbitrarily placed at the mid-
point root, rate tests are used to exclude quartets in which
members of the pairs have significantly different rates.

Although the quartet method neatly avoids problems of
topological uncertainty (because groups with undisputed
relationships can be chosen), it is difficult to combine
estimates from multiple quartets in a meaningful way
unless they are phylogenetically independent [23]. Fur-
thermore, the method does not avoid the difficulties
associated with the other rate-testing approaches men-
tioned above (i.e. the low power of tests, and the necessity
of excluding large amounts of data).

A related approach that avoids these difficulties is the
local molecular clock method of Yoder and Yang [24],
opology Statisticsd Software, if available Refs
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ixed Point
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Figure 1. Examples of variable-rate molecular-dating methods. Each of (a–d) shows an example phylogeny to be dated, and indicates where different rates, denoted ri, have

been assigned to different branches. In the quartet method (a) [17], trees of four species are used, and both internal nodes must have external calibrations. The date of the

basal node is then estimated on the condition that a free-rate model (in which each external branch is assigned its own rate) is not preferred to the two-rate model shown.

With the local molecular clock method (b) [24], complete phylogenies are used, and placement of the additional rates, here r2 and r3, relies on the effective identification of

‘anomalous’ lineages. Methods allowing many different rates (c) [6,31,32,35] must specify prior expectations for the value of each rate, ri, as a function of the rate of its

parental branch rp(i) [in (c), for example, rp(4)Zr1]. According to the statistical framework used, these expectations are expressed either as a penalty function, or as a Bayesian

prior (Boxes 1 and 3). In Yang’s combined method (d) [44], the placement of a small number of rate classes (three in the example shown) is determined with the aid of prior

expectations, as in (c). The (three) rates are then estimated as in (b).
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which builds on the work of Kishino and Hasegawa [25]
(see also [26,27]). In this method, a few rate classes are
assigned to portions of the whole rooted tree (Figure 1b).
The placement of these rate groups relies on the effective
identification of anomalous lineages or groups, for
example, by rate testing or the use of external (or prior)
knowledge [24,25]. Alternatively, rates can be placed after
informal examination of branch length estimates obtained
without assuming rate constancy. For example, in their
investigation of primate speciation dates, Yoder and Yang
[24] noticed that their marsupial outgroup taxa had
slower rates than did their eutherian ingroup, and so
assigned a local clock to each of these two groups.
A drawback of this approach, as Yoder and Yang point
out, is that using the data to assign rate placements
precludes the use of the same data to test formally the
adequacy of those placements.
Methods using many rates (rate smoothing)

Whereas local molecular clock methods rely on rate
changes being relatively infrequent, other methods have
been developed in which the rate can change many times
(Figure 1c). In these methods, the placement of (potential)
rate changes is fixed in advance, but because so many are
assigned, the difficulty of deciding where to place them is
largely avoided (there are, however, some relatively minor
differences in the placements between implementations
[22,28–30]). To avoid problems of nonidentifiability, these
methods must rely on strong a priori assumptions about
the way in which rates change over the tree. Sets of rates
that conform to these assumptions are then favoured
during the estimation procedure.

Within this broad class of methods, two general
approaches can be identified. The first approach was
introduced in a pioneering paper by Sanderson [6] where
it was termed ‘rate smoothing’. Here, the prior assumption
about rates is that small changes in rate are more likely
than are large changes. This assumption is embodied
in a penalty function that is minimized during the
estimation (Box 1). In a later implementation [31], the
www.sciencedirect.com
rate-smoothing function is combined with a likelihood
model of branch lengths (Box 2), thus generating a
‘penalized likelihood’ estimate (Box 3).

The second approach, pioneered by Thorne et al. [32],
uses Bayesian statistics, a framework in which prior
beliefs about parameters are exploited in their estimation
[28,32–37]. In Bayesian methods, the prior assumptions
about rates are expressed in a formal probability distri-
bution, so patterns of rate change that depart from these
assumptions are assigned lower probability values.

These two approaches are based on different schools of
statistics, each of which has passionate advocates. How-
ever, in terms of their assumptions about rate change, the
methods are remarkably similar. Indeed, most Bayesian
studies to date have relied on the same basic assumption
as rate smoothing, namely that rates change gradually
over the tree. This assumption, however, can be embodied
in a variety of stochastic models of rate change, some of
which are considered in Box 1.

In addition to their similar assumptions, even on purely
formal grounds, the Bayesian and penalized likelihood
approaches are quite closely related (Box 3). Nonetheless,
there are important differences. A benefit of the Bayesian
approaches is that standard methods exist for choosing
between the different rate change models (although, in
practice, these are rarely applied) [36,38,39]. Within the
penalized likelihood framework, by contrast, the penalty
function tends to be viewed as a mere statistical expedi-
ency; as a result, the assumptions about rate change tend
to be less closely examined. However, the greater explicit-
ness of the Bayesian approach also brings with it addi-
tional problems. In particular, Bayesian statistics requires
that prior probabilities be specified for all divergence
dates, similar to those specified for the rates (Box 3). In
some studies, this ‘date prior’ seems to have been a major
determinant of the date estimates obtained, even though
its form cannot be adequately justified in terms of the
prior knowledge available [28,39–43]. The influence of the
prior diminishes, however, with the amount of sequence
data used [33,34,42].
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Box 1. Different models of rate change

Dating methods that rely on a priori assumptions about rate change

use a variety of models. The most common of these are presented in

Table I in a common notation. We express the models as penalty

functions, as might be used in a penalized likelihood approach [31,44]

(the relation to theequivalentBayesian approach is explained inBox3).

Each of the terms shown is proportional to the penalty applied to a

single rate, r, given the rate of its parent branch, rp . The full penalty

function contains a similar term for each rate specified (and, in some

cases, normalizing constants that do not depend on r). In addition, the

basal rate is dealtwith slightly differentlybydifferent implementations.

Most of the models in Table I can reasonably be described as rate

smoothing, because each penalizes large changes in rate. Some of the

differences are due solely to different interpretations of this principle

(e.g. the Quadraticmodel applies least penaltywhen rZrp, whereas the

Lognormal model, expressed asa probabilitydistribution,ensures that

E[log(r )]Zlog(rp) and the Stationary Lognormal model, that E[r ]Zrp).

The models that depart most from the rate-smoothing assumption

contain strong directional trends (i.e. they penalize rate increases more

or less severely than they penalize rate decreases). For example, under

the Exponential model, larger rates will always be more harshly

penalized, whereas, under the Ornstein-Uhlenbeck Process, the

preferred rate decreases towards zero over time. Neither of these

properties has any biological justification [30,39].

The other important difference between the models is that some

penalize more harshly rate changes that occur over shorter time

periods (i.e. the penalty decreases with t). For example, under the

Lognormal model, log rates are assumed to change in a quasi-

continuous manner analogous to Brownian motion, whereas under

the Quadratic model, the time separating the rate changes is

ignored. In general, the time-dependent models seem more

plausible; however, time-independent penalties might be reason-

able if rate changes were thought to occur primarily at speciation

events, and taxon sampling was reasonably complete. (Questions of

time dependence apply only when rate assignments are fixed in

advance of the estimation [30].)

Finally, although we know of no such method available, a rate-

smoothing procedure similar to Cutler’s method [45] could penalize

deviations fromthe overall meanrate, rather than from theparental rate.

Table I. Models of rate change

Model

name

Functiona Refs

Quadratic ðrKrpÞ
2 [6,31]

Lognormal 1

2bt
logðr =rpÞ
� �2

C log r
ffiffiffiffiffiffiffiffi
2bt

p� �
[32,35]

Stationary

Lognormal

1

2bt
logðr =rpÞCbt=2
� �2

C log r
ffiffiffiffiffiffiffiffi
2bt

p� �
[28,35,44]

Exponential r =rp [35,36]

Ornstein-

Uhlenbeck

Process

ðrKrpe
Kbt Þ2= tð1KeK2bt Þ=b

� �
[35,36]

Gamma

Multiplier

r =rpKblogðr =rp Þ [30]

aNotation: r, rate of the branch under consideration; rp , rate of its parental

branch; t, time separating current and parental branch (defined slightly

differently in different implementations); and b, an additional parameter.

Box 2. Branch length estimation in molecular dating

Molecular-dating methods differ in their treatment of branch length

estimation. Each approach represents a compromise between the

competing demands of model accuracy, simplicity and compu-

tational tractability.

Some methods implement a full likelihood substitution model

[24,35,36]. These models take full account of the uncertainty in

estimates, resulting from multiple substitutions at a single site

(which can be important even at low divergence [38]) and from the

stochastic nature of molecular evolution. In addition, they can

distinguish between different kinds of substitution (e.g. transitions

and transversions) and incorporate rate variation between sites.

Model-testing methods can be used to find the best model for the

data [38,62,63]. However, this approach often introduces several

additional parameters (a particular problem for Maximum Like-

lihood methods) and can be computationally intensive.

To avoid these problems, other dating methods do not use the

molecular data directly in the estimation, but instead use previously

obtained branch length estimates as ‘pseudo-data’. These branch

length estimates can be obtained via Maximum Likelihood, retaining

many of the advantages of the approach described above; however,

there remains the question of how to deal with their associated

uncertainty.

At one extreme, Sanderson’s nonparametric rate smoothing

(NPRS; [6]), assumes that branch lengths are known with complete

certainty, and attributes all of the differences between sister

branches to variation in the rate of evolution. (In this respect,

NPRS is the exact reverse of many molecular-dating studies, which

assume complete rate constancy, but accept that this can result in

many different branch lengths.) By ignoring uncertainty in the

branch length estimates, NPRS avoids the thorny problem, faced by

other rate-smoothing approaches, of weighting the two sources of

uncertainty during the estimation (Box 3 [31,32]).

Other methods of Sanderson [27,31] follow Langley and Fitch

[11,15], and use a greatly simplified likelihood function, assuming

that the substitution number is a Poisson-distributed random vari-

able, centred on the branch-length estimate. Cutler’s method [45]

extends this approach by using a Gaussian (normal) distribution

instead of a Poisson distribution. (The Gaussian distribution has

an arbitrarily large variance, whereas the variance of a Poisson

distribution is equal to its mean.) The relation of these simplified

models to the full substitution models is not well understood, but it

is possible that some of the inflation of variance detected by Cutler

[45] and Langley and Fitch [11,15] is due to characteristics of

molecular evolution that are neglected by their likelihood models,

rather than to rate variation in any stronger sense [31,54,55,64].

Finally, Thorne et al. [32,44] introduced a useful compromise

between the approaches discussed above. These authors approxi-

mate their likelihood substitution model with the use of a multi-

variate normal distribution, whose means and covariance matrix are

estimated from the molecular data.
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Finally, the implementations of the methods discussed
in this section also differ substantially in their treatment
of the branch length estimates. These differences, which
are unrelated to the assumptions about rate change
(Box 1), and only tangentially related to the statistical
methods used (Box 3), are discussed in Box 2.

Combined methods

Rate testing and methods relying on the rate-smoothing
assumption are in many ways complementary (one
www.sciencedirect.com
dealing with rare, large changes in rate, the other with
small, frequent changes). As such, a promising approach
might be to combine them in some way; for example, by
identifying anomalous lineages with rate testing, and then
applying rate smoothing to the remaining taxa. The
methods of Huelsenbeck et al. [30] and Yang [44] can
also be viewed as hybrid approaches, combiningelementsof
both rate smoothing and local molecular clocks, and to some
extent bridging the gap between them. Both methods
present original solutions to the problem of placing rate
changes on the tree.

The Bayesian method of Huelsenbeck et al. [30] con-
tains a model of rate change that, like most similar methods,
penalizes large changes. Uniquely, however, the model
enables the number of rate changes to vary during the

http://www.sciencedirect.com


Box 3. Bayesian statistics and penalized likelihood

The penalized likelihood approach of Sanderson [31] finds the set of

divergence dates and molecular rates that maximize a function in the

form of Eqn I,

LogðLÞKlP ; [Eqn I]

where L denotes the likelihood of obtaining the sequence data given

the proposed rates and dates (Box 2), and P denotes a penalty

function (Box 1). In Sanderson’s implementation (the Quadratic

model of Table I, Box 1), this function embodies the rate-smoothing

assumption and so increases as the rates become more hetero-

geneous. The parameter l determines the relative importance of the

rate smoothing and the uncertainty attached to the branch length

estimates. In addition, the dates of some nodes are constrained to lie

within a given range (usually determined by fossil evidence). We can

include these external constraints explicitly by taking the antilog

(or exponential) of Eqn I and writing the result as Eqn II.

L!eKlP !C ; [Eqn II]

where CZ1 if the proposed dates are within their allowable bounds,

and Z0 if they are not. When constraints are included, the same rates

and dates will maximize Eqn I and II.

Depending on the choice of penalty function and the constraints,

we could write an expression such as Eqn II a formal probability

distribution. The resulting distribution would describe the probabili-

ties of the rate and date values given the sequence data; in Bayesian

statistics, this distribution is called the posterior distribution of rates

and dates. Estimating the entire posterior distribution is the goal of a

Bayesian analysis. By contrast, the equivalent penalized likelihood

approach produces only the highest point, or mode, of the posterior

distribution (which is equivalent to a maximum a posteriori or MAP

estimate). As such, a Bayesian approach provides all the information

in a penalized likelihood estimation, and more. In particular, con-

fidence intervals for the date estimates are easy to obtain from the

width of the posterior distribution.

Crucially, however, a Bayesian approach is only possible if Eqn II

can, in fact, be expressed as a proper probability distribution (i.e. a

distribution that can be normalized to unity). To guarantee this, eKlP

and C must both be expressible as probability distributions (the

likelihood, by definition, is always such a distribution). In this

case, they are referred to as the prior distributions of molecular rates

(eKlP) and divergence dates (C ), and express our beliefs about

these parameters in the absence of the molecular data. Specifying a

prior distribution of divergence dates has proved especially difficult

for some Bayesian implementations [28,36,39,43]. For example,

Sanderson’s constraints, as described above, cannot be expressed in

this way. (This is because some nodes can be legitimately placed at

an indefinite age, and so no normalizing constant can be found.)

In addition to those mentioned above, there are other differences

between Bayesian and likelihood methods. Most important are the

fundamentally different approaches to ‘nuisance parameters’ (such

as the parameter l), and the different numerical methods required;

both of these are well explained elsewhere [31,33,34,44].
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estimation, with departures from the expected number of
changes penalized. In addition, and again uniquely, these
changes can occur anywhere on the tree, not just at a set of
predetermined points (such as the internal nodes) [29].
Because there are two distinct kinds of constraint on the
rates, with penalties applied to the number of rate changes
and to their magnitude, one or other can be given greater
prominence. To test the sensitivity of the date estimates to
the different weightings, Huelsenbeck et al. [30] applied
their method to a single data set (complete mitochondrial
sequences from 23 mammalian species), while making
different prior assumptions about the number of rate
changes. They showed that the same data could be inter-
preted as containing many changes of small effect (the
www.sciencedirect.com
assumption governing the rate-smoothing approaches) or as
containing a few changes of large effect (the assumption
behind the local molecular clocks approaches). Crucially,
they showed that the date estimates for most nodes varied
little in the two cases, although, for a few nodes, estimates
differed by as much as 15%.

Although Huelsenbeck et al.’s method does assign differ-
ent rates to different parts of the tree, these rates cannot be
directly estimated along with the dates. This is because the
number of rate classes is allowed to vary, so each date esti-
mate isassociatedwithmanydifferentrate-changescenarios.
For this reason, Huelsenbeck et al.’s [30] method provides
estimates of the ‘hyperparameters’ that specify the model of
rate change, rather than estimating the rates themselves.

Yang’s heuristic rate-smoothing method [44] consists
of two quite separate stages. The first stage is ‘ad hoc rate
smoothing’ (AHRS), a penalized likelihood estimation
using Kishino et al.’s Stationary Lognormal model [28]
(Box 1). This stage yields a distinct rate estimate for each
branch of the tree. Using these estimates, each branch is
assigned to one of a small number of rate groups (branches
with similar rates being placed in the same group), after
which the rate and date estimates from the first stage are
discarded. The second stage is a conventional local mol-
ecular clock estimation [24] using the rate group place-
ments determined by the first stage (Figure 1d).

Cutler’s method

A quite distinctive approach to incorporating rate vari-
ation was developed by Cutler [45]. As this author points
out, the observation that sister branches have widely
variable numbers of substitutions could have two distinct
explanations: (i) that different rates of molecular evolution
characterize the lineages; or (ii) that the process of mol-
ecular evolution is identical in all lineages, but simply
has a high variance (owing, perhaps, to substitutions
tending to cluster in time); if this were the case, random
sampling alone might have produced the observed vari-
ation. Furthermore, possibilities (i) and (ii) might be funda-
mentally indistinguishable in some cases. Unlike all the
methods discussed so far, which are premised on assump-
tion (i), Cutler’s method is premised on assumption (ii), so
that all lineages are assigned the same basic evolutionary
rate, but the process can be highly variable such that rapid
bursts of substitutions might occur on some lineages (Box 2).
In this way, rate variation is implicit in the way likelihood
values are assigned to the branch lengths.

Cutler’s method resembles rate smoothing in that
departures from rate constancy are (in effect) penalized
during the estimation. However, unlike all of the models
in Box 1, Cutler’s method does not assume that bursts of
substitutions are most likely to occur on closely related
lineages or, alternatively, that rapidly evolving lineages
are most likely to give rise to other rapidly evolving
lineages. Rather, the method penalizes departures from
the overall mean rate of the tree, regardless of the smooth-
ness with which the changes take place.

Comparing the methods

As is well known, in some cases, different molecular-
dating studieshaveproduced wildly different dateestimates
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for the same evolutionary event (e.g. [5,43,46]). Perhaps
the most notorious example has been the origin of the
major metazoan phyla [5,47], where molecular date esti-
mates have ranged from w575 million years ago (Mya)
[36,48] to O1200 Mya [49]. But it is not obvious to what
extent these differences are due to the different methods
or to the different data used (the studies use different
species, sequences and fossil calibrations) [42,46,50].
To disentangle these factors, an increasing number of
studies have compared date estimates obtained from
the same data but with the use of different dating
methods [26,28,30,35,36,41,51].

Most such studies contain variable rate and constant
rate estimates and, in almost every case, conclude that
relaxing the assumption of rate constancy has a dramatic
influence on the results [28,35,36,51]. Although this con-
clusion is unequivocal and important, it does not address
the reliability of most published constant-rate studies.
This is because, unlike the methodological comparisons,
most constant-rate studies will rate test their data and
exclude certain lineages [10,48].

No such caveat applies to comparisons between differ-
ent variable rate methods. Here, results are more mixed,
with some methods yielding similar estimates, and some
not [17,26,35,41]. Explaining the differences that remain
is complicated, because the dating methods differ not only
in the way in which they deal with rate variation, but also
in their treatment of the other aspects of molecular dating,
such as branch length estimation, the use of external fossil
constraints and the statistics reported. A few of these dif-
ferences are necessary corollaries of the assumptions made
about evolutionary rates, but most are more-or-less arbi-
trarily associated with different implementations (Table 1).

Prior knowledge of rate change: beyond rate

smoothing?

Although empirical comparisons between the methods can
be difficult to interpret, we can still ask about the a priori
reasonableness of the rate change assumptions on which
the methods rely. This task is simplified by realizing that
these assumptions fall into two broad categories. Several
methods rely on rate changes being uncommon, but poten-
tially large (so that lineages departing from rate constancy
can be detected and excluded, or assigned their own local
molecular clock). Other methods assume that rate changes
are frequent, but small. Which of these is the most likely to
reflectbiological reality? The answer depends to someextent
on the kind and cause of the rate variation being considered.

Some rate variation might be due to the ‘sloppiness’ of
the molecular clock resulting from widespread noise in
substitution rates (owing perhaps to correlated changes in
paired nucleotides, positive selection or demographic fluc-
tuations) [1]. Rate-smoothing approaches (in the broad
sense), which model rate change as a random walk, might
be best placed to deal with variation of this kind. By
contrast, local molecular clocks might be better suited to
situations where lineages have substantial and persistent
differences in rates of molecular evolution [1,52–55].

Unfortunately, to move beyond these fairly innocuous
observations, we need to increase our understanding of
molecular evolution. For example, many studies have
www.sciencedirect.com
demonstrated that murid rodents have consistently faster
substitution rates than do hominids [7]. But extrapolating
from such results to other lineages is complicated because
so many factors might be responsible for the difference
[56,57]. Explanations that have been suggested include
differences in DNA repair efficiency (rats and mice lack
some of the excision repair pathways that are found in
primates), generation time (the mouse germ line might be
copied 100 times more often than is the human genome
per unit of evolutionary time, and so accumulate more
DNA copy errors), metabolic rate (a cell in a mouse burns
more energy than does a human cell and thus might
accumulate more DNA-damaging metabolites), effective
population size (following the predictions of the nearly
neutral theory [58]), or other factors. Comparative studies
have identified species characteristics that are correlated
with variation in rate of evolution, such as body size,
generation time, metabolic rate and fecundity [56,57,59].
Substitution rate has been also been found to be positively
related to diversification rate, suggesting that tree shape
itself might influence rates [60,61].

Although this long (and probably incomplete) list of
factors that can influence rates might lead to pessimism
about the possibility of accurate molecular dating, if cor-
relations between traits and the rate of molecular evolu-
tion are found to be common and reasonably robust, then
they might be used, as prior information, to constrain date
estimates. Using this prior information would then involve
specifying how the relevant traits changed over the tree.
However, we currently lack information that could be used
in this way with sufficient confidence. The problems will be
even more acute in a Bayesian framework in which our prior
knowledge (messy as it is) must be corralled into formal
probability distributions (Box 3).
Conclusion

Molecular-dating methods are a boon to evolutionary bio-
logy because they can be applied to all species, areas and
time periods, and can give a glimpse into the past of line-
ages for which crucial historical information is missing.
But molecular dating is greatly complicated by variation
in the rate of molecular evolution between lineages. Never-
theless, a variety of methods are available for molecular
dating in the presence of rate variation; many of these
have been implemented in freely available software pack-
ages and are becoming widely used. Comparing the methods
is difficult, because of the many differences between
implementations. If future studies confirm initial findings
that different methods can lead to very different date
estimates, it will be crucial to discriminate between their
different assumptions about rate change, and if necessary,
to develop new, and more realistic models. An important
part of this process will be investigating the causes and
dynamics molecular rate variation.
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We thank Stéphane Aris-Brosou, Tim Barraclough, Simon Ho, John
Huelsenbeck, Matt Phillips, Andrew Rambaut, Vincent Savolainen,
David Waxman and Ziheng Yang for helpful correspondence or discussions.

http://www.sciencedirect.com


Review TRENDS in Ecology and Evolution Vol.20 No.6 June 2005326
References

1 Bromham, L. and Penny, D. (2003) The modern molecular clock. Nat.
Rev. Genet. 4, 216–224

2 Holmes, E.C. (2003) Molecular clocks and the puzzle of RNA virus
origins. J. Virol. 77, 3893–3897

3 Sarich, V.M. and Wilson, A.C. (1967) Immunological time scale for
hominid evolution. Science 158, 1200–1203

4 Goodman, M. et al. (1998) Towards a phylogenetic classification of
primates based on DNA evidence complemented by fossil evidence.
Mol. Phylogenet. Evol. 9, 585–598

5 Smith, A.B. and Peterson, K.J. (2002) Dating the time of origin of
major clades: molecular clocks and the fossil record. Annu. Rev. Earth
Planet. Sci. 30, 65–88

6 Sanderson, M.J. (1997) A nonparametric approach to estimating
divergence times in the absence of rate constancy. Mol. Biol. Evol. 14,
1218–1231

7 Wu, C.I. and Li, W.H. (1985) Evidence for higher rates of nucleotide
substitutions in rodents than in man. Proc. Natl. Acad. Sci. U. S. A. 82,
1741–1745

8 Woolfit, M. and Bromham, L. (2003) Increased rates of sequence
evolution in endosymbiotic bacteria and fungi with small effective
population sizes. Mol. Biol. Evol. 20, 1545–1555

9 Davies, T.J. et al. (2004) Environmental energy and evolutionary rates
in flowering plants. Proc. R. Soc. Lond. B Biol. Sci. 271, 2195–2200

10 Hedges, S.B. and Kumar, S. (2003) Genomic clocks and evolutionary
timescales. Trends Genet. 19, 200–206

11 Langley, C.H. and Fitch, W.M. (1973) The constancy of evolution:
a statistical analysis of a and b haemoglobins, cytochrome c, and
fibrinopeptide A. In Genetic Structure of Populations (Morton, N.E.,
ed.), pp. 246–262, University of Hawaii Press

12 Sarich, V.M. and Wilson, A.C. (1973) Generation time and genomic
evolution in primates. Science 179, 1144–1147

13 Takezaki, N. et al. (1995) Phylogenetic test of the molecular clock and
linearized trees. Mol. Biol. Evol. 12, 823–833

14 Felsenstein, J. (2004) Inferring Phylogenies, Sinauer Associates
15 Langley, C.H. and Fitch, W.M. (1974) An estimation of the constancy of

the rate of molecular evolution. J. Mol. Evol. 3, 161–177
16 Tajima, F. (1993) Simple methods for testing the molecular evolution-

ary clock hypothesis. Genetics 135, 599–607
17 Rambaut, A. and Bromham, L. (1998) Estimating divergence dates

from molecular sequences. Mol. Biol. Evol. 15, 442–448
18 Bromham, L. et al. (2000) The power of relative rates tests depends on

the data. J. Mol. Evol. 50, 296–301
19 Robinson, M. et al. (1998) Sensitivity of the relative-rate test to

taxonomic sampling. Mol. Biol. Evol. 15, 1091–1098
20 Scherer, S. (1989) The relative-rate test of the molecular clock

hypothesis: a note of caution. Mol. Biol. Evol. 6, 436–441
21 Chang, J.T. (1996) Full reconstruction of Markov models on evolu-

tionary trees: identifiability and consistency. Math. Biosci. 137, 51–73
22 Rannala, B. (2002) Identifiability of parameters in MCMC Bayesian

inference of phylogeny. Syst. Biol. 51, 754–760
23 Bromham, L. et al. (1998) Testing the Cambrian explosion hypothesis

by using a molecular dating technique. Proc. Natl. Acad. Sci. U. S. A.
95, 12386–12389

24 Yoder, A.D. and Yang, Z. (2000) Estimation of primate speciation dates
using local molecular clocks. Mol. Biol. Evol. 17, 1081–1090

25 Kishino, H. and Hasegawa, M. (1990) Converting distance to time:
application to human evolution. Methods Enzymol. 183, 550–570

26 Yang, Z. and Yoder, A.D. (2003) Comparison of likelihood and Bayesian
methods for estimating divergence times using multiple gene loci
and calibration points, with application to a radiation of cute-looking
mouse lemur species. Syst. Biol. 52, 705–716

27 Sanderson, M.J. (2003) r8s: inferring absolute rates of molecular
evolution and divergence times in the absence of a molecular clock.
Bioinformatics 19, 301–302

28 Kishino, H. et al. (2001) Performance of a divergence time estimation
method under a probabilistic model of rate evolution. Mol. Biol. Evol.
18, 352–361

29 Penny, D. et al. (1998) Estimating times of divergence with a change
of rate: the orang-utan/African ape divergence. Mol. Biol. Evol. 15,
608–610

30 Huelsenbeck, J.P. et al. (2000) A compound Poisson process for relax-
ing the molecular clock. Genetics 154, 1879–1892
www.sciencedirect.com
31 Sanderson, M.J. (2002) Estimating absolute rates of molecular evolu-
tion and divergence times: a penalized likelihood approach. Mol. Biol.
Evol. 19, 101–109

32 Thorne, J.L. et al. (1998) Estimating the rate of evolution of the rate
of molecular evolution. Mol. Biol. Evol. 15, 1647–1657

33 Holder, M. and Lewis, P.O. (2003) Phylogeny estimation: traditional
and Bayesian approaches. Nat. Rev. Genet. 4, 275–284

34 Huelsenbeck, J.P. et al. (2002) Potential applications and pitfalls of
Bayesian inference of phylogeny. Syst. Biol. 51, 673–688

35 Aris-Brosou, S. and Yang, Z. (2002) Effects of models of rate evolution
on estimation of divergence dates with special reference to the meta-
zoan 18S ribosomal RNA phylogeny. Syst. Biol. 51, 703–714

36 Aris-Brosou, S. and Yang, Z. (2003) Bayesian models of episodic
evolution support a late Precambrian explosive diversification of the
metazoa. Mol. Biol. Evol. 20, 1947–1954

37 Thorne, J.L. and Kishino, H. (2002) Divergence time and evolutionary
rate estimation with multilocus data. Syst. Biol. 51, 689–702

38 Arbogast, B.S. et al. (2002) Estimating divergence times from
molecular data on phylogenetic and population genetic timescales.
Annu. Rev. Ecol. Syst. 33, 707–740

39 Welch, J.J. et al. Molecular dates for the “Cambrian explosion”: the
influence of prior assumptions. Syst. Biol. (in press)

40 Yoder, A.D. and Yang, Z. (2004) Divergence dates for Malagasy lemurs
estimated from multiple gene loci: geological and evolutionary con-
text. Mol. Ecol. 13, 757–773
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