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ABSTRACT
It has been observed repeatedly that the distribution of new mutations of a quantitative trait has a

kurtosis (a statistical measure of the distribution’s shape) that is systematically larger than that of a normal
distribution. Here we suggest that rather than being a property of individual loci that control the trait,
the enhanced kurtosis is highly likely to be an emergent property that arises directly from the loci being
mutationally nonequivalent. We present a method of incorporating nonequivalent loci into quantitative
genetic modeling and give an approximate relation between the kurtosis of the mutant distribution and
the degree of mutational nonequivalence of loci. We go on to ask whether incorporating the experimentally
observed kurtosis through nonequivalent loci, rather than at locus level, affects any biologically important
conclusions of quantitative genetic modeling. Concentrating on the maintenance of quantitative genetic
variation by mutation-selection balance, we conclude that typically nonequivalent loci yield a genetic
variance that is of order 10% smaller than that obtained from the previous approaches. For large popula-
tions, when the kurtosis is large, the genetic variance may be �50% of the result of equivalent loci, with
Gaussian distributions of mutant effects.

EXPERIMENTAL measurements of mutant effects and Hill 1988; Bürger and Lande 1994; Bürger 1998)
and the variance of the genetic variance among replicateon a polygenic trait have consistently found that

the distribution of mutant effects is leptokurtic, with a lines and thus the predictability of dynamics under selec-
tion (Keightley and Hill 1989; Bürger and Landekurtosis (fourth central moment divided by the squared

variance) that is in excess of the value 3 associated with 1994; Mackay et al. 1994). We note that an assumption,
underlying all of these models, is that there are identicala normal distribution. A prominent finding was the work

on P-element insertions affecting Drosophila bristle distributions of mutant effects at each locus. These dis-
tributions are necessarily leptokurtic, to yield the empir-number (Mackay et al. 1992; Lyman et al. 1996). This
ically observed kurtosis of the overall mutant distri-work yielded mutant distributions that were highly lep-
bution.tokurtic—with a kurtosis of order 40. In a recent review,

Here, by contrast, we propose an alternative modelGarcia-Dorado et al. (1999), while confirming this
that suggests that the observed kurtosis of the distribu-result, concluded that the extreme kurtosis of the ster-
tion of mutant effects may be a property that emergesnopleural bristle mutations is not typical of other quanti-
only at the trait level, regardless of the distribution oftative traits. However, all of the fitness and morphologi-
mutant effects at individual loci. The model relies cru-cal traits they reviewed had distributions of mutant
cially on the empirically motivated assumption that theeffects more leptokurtic than a normal distribution. A
loci contributing to a trait have different mutationalsimilar pattern appeared in the nine Drosophila charac-
effects and thus are nonequivalent.ters assayed by Keightley and Ohnishi (1998). The

There is abundant evidence suggesting that quantita-range of experimental protocols and statistical tech-
tive trait loci (QTL) are mutationally nonequivalent.niques used in this work supports the notion that this
Studies have shown that the proportion of phenotypicpattern is not an experimental artifact and that a lep-
variance contributed by different QTL can vary widelytokurtic distribution of mutant effects is a real phe-
(Falconer and Mackay 1996, ch. 21). More specifi-nomenon.
cally, the evidence suggests that mutations at the over-A number of theoretical treatments have dealt with
whelming majority of QTL contribute small fractions ofthe implications of this kurtosis for biologically impor-
the phenotypic variance, while only a small numbertant quantities. The two most notable are the amount
make more substantial contributions (Bost et al. 1999).of genetic variance maintained by populations under
Despite the evidence, such nonequivalence has beenmutation-selection balance (Fleming 1979; Keightley
incorporated only rarely into population/quantitative
genetic modeling. This is surely because parameterizing
each locus separately makes models unwieldy, and
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We present a new method of incorporating mutational F(x) � �
n

i�1

ci fi(x). (1)
nonequivalence of loci that avoids these problems. This
is achieved by choosing the various mutational proper-

To experimentally measure this distribution requiresties of each locus, at random, from a particular probabil-
either an asexual organism or a sexual line that is geneti-ity distribution. We then argue that certain observable
cally homogeneous (homozygotic at each locus). With-quantities, such as the distribution of mutant trait ef-
out such genetic homogeneity, the variation generatedfects, are “self averaging.” As such, we can replace these
by recombination can mask the direct effects of F(x).observable quantities by their average over the randomly

For simplicity, we assume that the distribution of mu-chosen mutational properties. This reduces the number
tant effects at locus i, fi(x), is a parameterization of aof free parameters in the problem to the (assumed
“reference distribution,” g(z). This reference distribu-small) set required to specify the probability distribution
tion has the properties that it (i) is normalized to unity,of mutational properties of individual loci. In addition
(ii) has unit variance, and (iii) has zero mean. Theto an economy of description, the small set of free pa-
results given below apply for a range of distributions withrameters can also be thought of as encapsulating the
these properties, but for concreteness, we introduce adegree of nonequivalence of loci. Thus by exposing the
specific form of the reference distribution, the Gaussian.influence of these parameters we can make explicit the
This is the form of fi(x) adopted by Crow and Kimurainfluence of nonequivalent loci. In the first part of this
(1964) and is given byarticle, we show explicitly the influence of these parame-

ters on the distribution of new mutations. Having dem-
onstrated that the kurtosis of the distribution of mutant g(z) �

1

√2�
exp�� z 2

2 �. (2)
effects may emerge through nonequivalent loci, we fol-
low this up, in the second part of this article, by explor-

We derive the allelic mutation distribution at locus i,
ing other biological implications of our way of incorpo-

fi(x), from g(z) by incorporating a parameter bi (whererating mutational kurtosis into the model. In particular ∞ � bi � �∞) and a parameter vi (where vi � 0), aswe compare the implications for the level of genetic
variance maintained at mutation-selection balance with

fi(x) �
1

√vi

g �x � bi

√vi
�. (3)the method of incorporating mutational kurtosis used

in the theoretical articles cited above.

The distribution fi(x) of Equation 3 is normalized to
unity, but incorporates a mutational bias, bi, which is
the mean deviation of a mutant allelic effect from the

MODEL AND RESULTS parental value. More importantly for this article, the
distribution fi(x) possesses a variance of vi—the varianceDistribution of mutant effects: We use the contin-
of mutant allelic effects. It follows that in this model,uum-of-alleles model introduced by Crow and Kimura
each locus is characterized by the three quantities �i, bi,(1964) and analyzed in the context of the maintenance
and vi, and we introduce nonequivalent loci by allowingof genetic variation by, among others, Kimura (1965),
variation in the values of these quantities across loci.Lande (1976), and Turelli (1984). In Crow and Kim-

Initially, let us confine ourselves to the case of nonbi-ura’s model of allelic mutation, the effect of a mutated
ased (or uniformly biased) mutation. As such, we set alloffspring’s allele, y�, is given by the sum of the parental
the bi to zero and confine ourselves to variation only inallelic effect, y, and a mutation effect x, thus y� � y �
the vi (the more general case is discussed below).x. The effect of each new mutation at locus i is drawn

To obtain the distribution of mutant effects, we sub-from a continuous probability distribution, fi(x). It is
stitute Equation 3 into Equation 1, yielding F(x) �assumed that the quantitative trait in question is con-
�n

i�1(ci/√vi)g(x/√vi). We assume mutational variancestrolled by n additively contributing diploid loci. Thus
(vi) at different loci have all been independently drawnan individual’s genotypic value, G, is given by G �
at random from a particular probability distribution,�n

i�1(yi � y*i ), where yi (y*i ) is the effect of the allele of
P(v), and that there is no correlation between allelicmaternal (paternal) origin at locus i. Additivity means
mutation rates (�i) and mutational variances. In suchthat at the level of the trait, there is no dominance or
a case, the distribution of mutant trait effects, F(x), whenepistasis.
calculated for a typical set of mutational variances, willThe distribution of single mutation effects for the
have moments that differ by terms of order n�1/2 fromtrait, F(x), is a weighted sum over the mutant distribu-
moments calculated from an F(x) that is averaged overtions at each locus, with the weights proportional to the
all vi; see appendix a for details. Thus an approximationallelic mutation rate at each locus. In terms of the allelic
of F(x) is to replace it by its average over all vi. Denotingmutation rate at the ith locus, �i, the mutation rate of
quantities averaged over all vi by an overbar, and usingthe trait is U � 2�n

i�1�i and the weighting of the ith
locus is ci � 2�i/U. We then have �n

i�1ci � 1, we find
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Let us now allow variation in the mutational biases,F(x) � �
∞

0

dv1�
∞

0

dv2 . . . �
∞

0

dvn F(x)�n
i�1P(vi) � �

∞

0

P(v)
1

√v
g � x

√v�dv
bi, to be taken into account. For independently chosen
b’s, with no correlation with other parameters, we find

� �
∞

0

dv�
∞

�∞
dy	(x � √vy)P(v)g(y), (4) (details not given) a kurtosis of mutant trait effects of


 � (
0[1 � CV2(v)] � 6� � 
b�
2)/(1 � �)2, where

where the final form on the right-hand side of Equation � � Var(b)/v and 
b is the kurtosis of the distribution
4 has been written in terms of a Dirac delta function, of the b’s. When � � 1, the effect of differences in biases
	(•). It follows directly from this final form that mo- across loci is negligible and we recover the result for
ments of F(x) factorize into a product of averages, one the kurtosis of mutational effects given in Equation 7.
with respect to P(v), the other with respect to g(z): However, in the opposite limit, � 
 1, the differences

in bias dominate and the kurtosis is approximately equal�
∞

�∞
x aF(x)dx � �

∞

0

v a/2P(v)dv�
∞

�∞
yag(y)dy � v a/2�

∞

�∞
yag(y)dy.

to that of the b’s. For intermediate values of �, the
dependence of 
 on � is nonmonotonic when (
b �(5)

0[1 � CV2(v)] � 6)/(
b � 3) � 1. In the following,

Both the second and fourth moments of the distribution we assume that � � 1 and that mutational biases have
of mutant effects, approximated here by F(x), have been little effect on the results. This, although plausible, is
investigated by empirical workers and play important mainly a convenience, as we have little empirical evi-
roles in quantitative genetic modeling. The second mo- dence to guide us as to an appropriate form for their
ment of F(x), when multiplied by the trait mutation

distribution. Observations such as Clayton and Rob-
rate, U, yields the input into the trait genetic variance

ertson’s (1964) finding that Drosophila bristle-number
from new mutations each generation and is usually de-

mutations do not change the trait mean can tell us little
noted VM (Lynch 1988; Houle et al. 1996). From Equa-

about the bias at any particular locus.tion 5 we quickly find VM/U � �x 2F(x)dx � v. Thus the
In contrast to the biases, there is some empirical evi-variance of mutational effects is simply the averaged

dence available for the distribution of the mutationalvariance of a locus. With the kurtosis, 
, the situation
variances, P(v). The aforementioned results from quan-is quite different. From Equation 5, our approximation
titative trait loci (QTL) analysis suggest that the vastof the kurtosis is
majority of QTL contribute a very small proportion of
phenotypic variance, while a much smaller number


 �
�x4F(x)dx

��x 2F(x)dx�2

�
v2

v 2

�y4g(y)dy

��y 2g(y)dy�2

. (6) contribute a substantial proportion (Falconer and
Mackay 1996; Bost et al. 1999, 2001). This suggests
that the distribution of mutational variances may be L

Using the fact that the squared coefficient of variation shaped; a candidate is the one-sided gamma distribu-
of the v, which we write as CV2(v), is defined as the tion, Pgamma(v; q, �), that vanishes for v � 0, and for v � 0
variance of v divided by its squared mean, i.e., CV2 (v) � is given by
(v2 � v 2)/v 2, we can write Equation 6 as


 � �1 � CV2(v)	
0, (7) Pgamma(v; q, �) �
vq�1exp(�v/�)

�q�(q)
, (8)

where 
0 � (�y4g(y)dy)/(�y 2g(y)dy)2 is the kurtosis associ-
where q and � are parameters and �(•) denotes Euler’sated with the distribution of mutant effects at a single
gamma function (Abramowitz and Stegun 1965). Thislocus or, equivalently, the kurtosis resulting from any
distribution will be L shaped if the parameter q is smallernumber of loci with identical distributions of mutant
than unity. The enhancement of kurtosis in Equationallelic effects. Note that since CV2(v) is nonnegative, it
7 that results from the gamma form of P(v) is givenfollows from Equation 7 that 
 � 
0 and any variation
simply by CV2

gamma(v) � �2q/(�q)2 � 1/q. If q � 1, thein the v values yields 
 � 
0. As such the overall distribu-
enhancement of kurtosis, resulting from nonequivalenttion of mutant effects will always have an enhanced
loci (Equation 7), can be substantial. By way of illustra-kurtosis when compared to the distributions at locus
tion, note that q is related to another significant quan-level. Furthermore, this enhancement is directly propor-
tity, namely the expected proportion of loci that havetional to the degree of nonequivalence of the loci, as
a mutational variance smaller than the mean mutationalexpressed by the squared coefficient of variation of the
variance, v � �q; this proportion is given by ��q

0 Pgammadistribution P(v). Although this result follows from an
(v; q, �)dv � 1 � �(q, q)/�(q), where �(a, z) � �∞

zapproximate treatment, we show in appendix b that if
t a�1e�tdt is the incomplete gamma function. Thus, ifthe only mutational properties of loci that are different
�82% of the loci affecting a trait have a mutationalare the mutational variances (vi), the result 
 � 
0 holds
variance smaller than the mean mutational variance, asquite generally. The fact that combining two different-
would occur if q � 1⁄9, then from Equation 7, an overallwidth Gaussians creates a leptokurtic compound distri-
kurtosis of 40 would be entirely consistent with an allelicbution was noted by Wright (1968, pp. 211–215), in

the context of Drosophila migration patterns. kurtosis, 
0, of just 4.
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Using Equation 8, we can go further and evaluate where Ka(z) is a Bessel function of the second type of
order a and argument z (Abramowitz and StegunEquation 4, the averaged distribution of mutant effects,

yielding the exact result 1965). In general, this distribution is highly leptokurtic;
see Figure 1, where we plot the analytical form of Equa-
tion 9 against results of numerical simulation, to illus-Fgamma(x) �

1

2q�1√���(q) �
2x 2

� �
q�1/2

Kq�1/2�
2x 2

� �, (9)
trate the validity of the averaging process.

Nonequivalent loci and the maintenance of genetic
variance: It is now appropriate to ask whether generat-
ing the empirically observed kurtosis using nonequiva-
lent loci, rather than incorporating it at locus level, via
equivalent loci, has a significant effect on other quanti-
ties of biological interest. We concentrate on the mainte-
nance of quantitative genetic variation in a single pheno-
typic trait, through the balance between mutation and
stabilizing selection.

Keightley and Hill (1988) suggested that increas-
ing the mutational kurtosis could have a dramatic effect
on the amount of genetic variance maintained in small
populations, but their claim was disputed by Bürger
and Lande (1994) whose simulation results suggested
that it had very little effect. We concentrate on very
large, effectively infinite populations and compare the
results of three classes of mutant distributions. The first
case is mutationally equivalent loci each with a Gaussian
distribution, henceforth abbreviated to EG; the second
case is equivalent leptokurtic loci, henceforth EL; and
the third is nonequivalent Gaussian loci, NG. Table 1
summarizes the differences between the three cases.

Figure 1.—Plots of the distribution of mutant effects, F(x),
are presented when mutant allelic effects at loci are all normally
distributed around the parental value, but each locus has a
randomly chosen mutational variance. The distribution of muta-
tional variances was taken to be a one-sided gamma distribution
of Equation 8, Pgamma (v; q, �). For all plots, the expected value
of the gamma distribution, v, was set to v � 0.05 (see main text).
This was achieved by choosing � � v/q. As a result, q is the
only free parameter in the distribution. The solid line shows
the averaged approximation of Equation 9 and the dotted
line shows a Gaussian distribution with mean 0 and variance
0.05 for comparison. We show results for three values of q,
namely 1⁄12, 1⁄6, and 1. These are chosen to give kurtoses close
to 40, 20, and 6 (Equation 7), thereby encompassing both
the extreme kurtosis measured for Drosophila sternopleural
bristle (Mackay et al. 1992; Lyman et al. 1996) and a lower
value typical of other observed traits (Garcia-Dorado et al.
1999). For the three values of q shown we calculate (see text)
that the expected proportion of loci with a mutational variance
smaller than the mean variance across all loci is �84% for q
� 1⁄12, 78% for q � 1⁄6, and 63% for q � 1. In addition, we
carried out simulations, in which 20,000 mutations were gener-
ated from 200 equally mutable loci, whose vi values were drawn
at random from the appropriate P(v) distribution. The histo-
gram (gray area) shows a typical run. The fit of the data to
the analytical approximation was generally good. For q � 1,
the mean value of the kurtosis, over 1000 runs, with a new set
of vi drawn each time, was �
� � 5.967 with a standard error, �,
of 0.473, while the theoretical prediction was E(
) � [1 �
CV2(v)] 
0 � 6. For q� 1⁄6, the results were �
� � 20.312 compared
with E(
) � 21 and � � 4.867. For q � 1⁄12, �
� � 36.993 while
E(
) � 39 and � � 12.000.
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TABLE 1 For the EL loci, the distributions of allelic effects at
each locus were constructed to be exactly equal to theA summary of the three different cases of mutation that
overall (i.e., trait) mutant distribution in the NG case.were considered in this work
Thus, the distribution of mutant allelic effects at locus
i is given by fEL,i(x) � FNG(x) for all i. As such, the overallMutation distribution Trait mutation

Abbreviation of loci distribution (i.e., trait) mutant distributions in EL and NG cases are
identical, FNG(x) � FEL(x), although resulting from veryEG Equivalent, Gaussian Nonleptokurtic
different distributions at locus level.EL Equivalent, leptokurtic Leptokurtic

For the EG loci, each locus had the same mutationalNG Nonequivalent, Gaussian Leptokurtic
variance, which was set equal to �v� � n�1�n

i�1vi, which
is the sample mean of the n values of vi. Note that
because n is finite, �v� does not exactly coincide with

The classic analyses of Crow and Kimura’s model the expected value of vi, namely v.
(Kimura 1965; Lande 1976; Turelli 1984) deal only As a result of the way the distributions of mutations
with EG loci, while extended analyses by Fleming were determined, the amount of variation contributed
(1979) and Bürger (1998) treat EL loci to some extent, by new mutations, VM, was identical in all three cases and
showing how mutational kurtosis enters, when small, as was given by VM � 2n��v�.
a correction to the approximations given in the earlier Rather than present a full numerical investigation,
articles. Since substantial values of the kurtosis make we make our point with a series of examples. Since
analytical treatment difficult, we have solved the rele- VM is one of the most well-characterized parameters in
vant equations numerically for all three cases. quantitative genetics, we chose the other parameters

We assume randomly mating populations, with dis- such that VM was set to the “typical level” of VM � 10�3,
crete generations, and no sexual dimorphism. Further- with the environmental variance set to unity throughout
more, we follow all of the relevant articles cited above, (Lynch 1988; Houle et al. 1996). To aid comparison
by making the approximation of global linkage equilib- with previous work, we set the strength of selection, s,
rium (cf. Turelli and Barton 1990). Under these as- to equal 0.025 (Turelli 1984) and took the expected
sumptions, the equilibrium genetic variance associated value of mutational variance, v, to equal 0.05. This last
with the trait, VG, can be determined by calculating the value, often used in theoretical work, stems from Lande’s
variance maintained at a single haploid locus, which, for (1976) extrapolation from the data of Russell et al. (1963).
locus i, we denote by �̂2

y,i, and then summing over all Since VM � 2n��v� � 10�3, the value �v� 
 0.05 approxi-
loci: mately requires 2n� � 0.02 and this left us the choice

of generating the required VM through either an implau-VG � 2�
n

i�1

�̂2
y,i. (10)

sibly large number of loci or an implausibly high muta-
tion rate. With this in mind, we examined two regimes,

The factor of 2 arises from diploidy. first n � 2000 and � � 10�5, and second, n � 200 and
If the average fitness of an individual with genotypic

� � 10�4. See Turelli (1984) and Lynch and Walsh
value G is given by 1 � sG2, we can find �̂ 2

y,i by solving (1998, Chap. 12) for a full discussion of these and other
the equation: parameter values.

The results given in Figure 2 involved drawing the vi(sy2
i � s� 2

y,i � �i)φi(yi) � �i� fi(yi� x)φi(x)dx (11)
values from the distribution Pgamma(v; q, v/q) for the

(Kimura 1965). This equation determines the equilib- three values of the shape parameter q used in Figure 1
rium distribution of genetic values at locus i, φi(yi), when that encompass the range of experimentally observed
yi is defined so that �̂ 2

y,i � �y2φi(y)dy. kurtoses (Garcia-Dorado et al. 1999).
To allow a meaningful comparison of results for the These results and all other combinations we tried

three classes of mutant distribution, they were gener- suggest strongly that VG(NG) � VG(EL) � VG (EG), where
ated as follows. First we generated a sample of n muta- VG(EG) denotes the genetic variance maintained by EG
tional variances, (v1, v2, . . . , vn) from the gamma distribu- loci and likewise for the other cases. In the most extreme
tion (Equation 8), where n is the number of loci. For case considered, however, the result for equivalent lep-
all three classes of mutant distribution, we assumed, for tokurtic loci, VG(EL), is only �12% smaller than the
simplicity, that the mutation rates at all loci were equal value of VG(NG) that followed from nonequivalent loci
and the biases were all zero. (via the method presented in this work). Thus while

For the NG loci, the distribution of mutant allelic there are differences in the genetic variances of “equiva-
effects at locus i, namely fNG,i(x), was Gaussian, with a lent leptokurtic” and “nonequivalent Gaussian” loci,
variance vi (see Equation 3, with all bi set to zero). As these are not particularly large. There does thus not
such, the overall (i.e., trait) mutant distribution, FNG(x) � seem to be a significant sensitivity of the genetic variance

on the precise way mutational leptokurtosis is incorpo-n�1�n
i�1(1/√vi)g(x/√vi), has a kurtosis that is given ap-

proximately by Equation 7, with 
0 � 3. rated into the model.
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of cards regime is �10�/s
0 Pgamma(v; q, v/q)dv � 1 � �(q,

10�q/(sv))/�(q), where �(a, z) � �∞
z t a�1e�tdt is the in-

complete gamma function. When 10�q/(sv) � 1 this
proportion is well approximated by (1/(q�(q)))/
(10�q/(sv))q. As an example of the numbers that can
be expected, we note that for � � 10�5, s � 0.025, and
v � 0.05, the proportion of loci lying outside the house
of cards regime is �69% for q � 1⁄12, 52% for q � 1⁄6,
and 8% for q � 1.

DISCUSSION

There is a tradition within quantitative genetic model-
ing of assuming that all loci can be treated as fully
equivalent “average” loci. Although this may be ade-
quate for many practical purposes, in some cases, it can
have a significant effect on the results of the analyses

Figure 2.—The plot shows the level of genetic variance
(Gimelfarb 1986; Hastings and Hom 1990). A secondmaintained by an infinite population (as explained in the
approach, which avoids the assumption of equivalence,text). For orientation, we have included (i) the level of genetic

variance predicted by the house of cards approximation (light is to categorize loci as either “major” or “minor,” i.e.,
gray bar) and (ii–iv) plots for the genetic variance when (ii) of having alleles with large or small phenotypic effect,
loci are mutationally equivalent and have Gaussian distribu- and to treat each in a qualitatively different fashion
tions of mutant effects (solid bar), (iii) loci are mutationally

(Lande 1983). Here, we have presented a third strategyequivalent and have leptokurtic distributions of mutant effects
that treats major and minor loci in a unified fashion,(open bar), and (iv) loci are mutationally nonequivalent and

have Gaussian distributions of mutant effects (dark gray bar). as extremes of a continuum. We could call those loci
As in Figure 1, we have drawn the mutational variances from with the highest ci values major loci in our model, al-
a gamma distribution with three values of the shape parame- though due to continuity of fi(x), they are still capable
ter, q, namely 1⁄12, 1⁄6, and 1, thereby generating kurtoses of

of generating mutations with close to zero phenotypic�40, 20, and 6.
effect. The existence of “isoalleles” at major loci offers
empirical support for this (Lynch and Walsh 1998,
pp. 322–323). We have shown that the reduced set ofA useful benchmark result is the house of cards ap-

proximation (Turelli 1984), which is closely related free parameters needed for this model can be viewed
as encapsulating the degree of nonequivalence of loci.to a scheme of mutation introduced by Kingman (1978).

This approximation applies to loci with vs/� 
 1 and Thus, by exposing the influence of these parameters we
can make explicit the implications of nonequivalentwhen applicable, yields a genetic variance of 2n�/s. It

works tolerably well for the EG loci in the regime where loci.
With this model, we have shown that the observedn � 2000 and � � 10�4 and extremely well for the

EG loci in the regime where n � 2000, � � 10�5 (see kurtosis in the distribution of mutant effects can plausi-
bly be attributed to variation in the mutational proper-Figure 2).

For both EL and NG loci, the genetic variance can, ties of the loci, rather than to leptokurtic distributions
at each locus. Conversely, we suggest that the distribu-in some cases, be �50% of the genetic variance of EG

loci and thus of the house of cards approximation. The tions at each locus [denoted here by fi(x)], are likely to
have lower kurtoses than that of the overall distribution,reason for this is different in the two cases.

For EL loci Bürger (1998) proved that the house of F(x). Thus, to the extent that any biological prediction
depends on high levels of kurtosis at locus level, thatcards approximation will always be an overestimate when

the locus distributions are leptokurtic. We have demon- prediction would have to be revised in the direction
of smaller effects from kurtosis. This conclusion doesstrated here that the correction can be substantial when

the distributions are highly leptokurtic (but still within require that the assumptions leading to Equation 7 hold,
at least roughly, and perhaps the most cautious conclu-the empirically observed range of kurtoses).

For NG loci, Bürger’s results do not apply, since at each sion is that knowledge of the distribution of mutations
on the trait allows very little to be inferred about thelocus, the distribution of mutant effects is itself Gaussian.

There are, however, a range of mutational variances pres- distribution of mutant effects at individual loci.
We went on to examine the maintenance of geneticent in the loci controlling the trait, and the genetic vari-

ance is a sum over the genetic variances arising from loci variance by mutation-selection balance, since the role
of mutational kurtosis here has been controversial. Ourwith different mutational variances. Turelli’s result applies

well only to loci for which v � 10�/s. In this work, findings show that, in large populations, substantial dif-
ferences are possible. In particular, for values of muta-the expected proportion of loci lying outside the house
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Gimelfarb, A., 1986 Additive variation maintained under stabilizingtional kurtosis measured empirically, the reduction can
selection: a two locus model pleiotropy for two quantitative char-

be �50%. Furthermore, incorporating this kurtosis acters. Genetics 112: 459–463.
Goldstein, D. B., and K. E. Holsinger, 1992 Maintenance of poly-through nonequivalent loci, rather than at locus level,

genic variation in spatially structured populations: roles for localleads to a further reduction. However, our findings indi-
mating and genetic redundancy. Evolution 46: 412–429.

cate that the differences between the results for “non- Hastings, A., and C. L. Hom, 1990 Multiple equilibria and mainte-
nance of additive genetic variance in a model of pleiotropy.equivalent Gaussian” loci and “equivalent leptokurtic”
Evolution 44: 1153–1163.loci are not large, typically �10%.

Houle, D., B. Morikawa and M. Lynch, 1996 Comparing muta-
In conclusion, although a substantial proportion of tional variabilities. Genetics 143: 1467–1483.

Keightley, P. D., and W. G. Hill, 1988 Quantitative genetic variabil-standing genetic variation may result from mutation-
ity maintained by mutation-selection balance in finite popula-selection balance (Bürger and Lande 1994), our find-
tions. Genet. Res. 52(1): 33–43.

ings make it even more difficult to reconcile the results Keightley, P. D., and W. G. Hill, 1989 Quantitative genetic-vari-
ability maintained by mutation-stabilizing selection balance—of simple models with the high heritabilities and strong
sampling variation and response to subsequent directional selec-selection observed in nature (see Turelli 1984). As
tion. Genet. Res. 54: 45–57.

such, our results make alternative explanations likely. Keightley, P. D., and O. Ohnishi, 1998 EMS-induced polygenic
mutation rates for nine quantitative characters in Drosophila mela-Prominent candidates include the assertion that much
nogaster. Genetics 148: 753–766.of the observed stabilizing selection is merely “appar-

Kimura, M., 1965 A stochastic model concerning the maintenance
ent,” the result of deleterious pleiotropic effects of muta- of genetic variability in quantitative characters. Proc. Natl. Acad.

Sci. USA 54: 731–736.tions affecting quantitative traits (see Barton 1990;
Kingman, J. F. C., 1978 A simple model for the balance betweenGavrilets and DeJong 1993; Nuzhdin et al. 1995),

selection and mutation. J. Appl. Prob. 15: 1–12.
and the suggestion that population subdivision (e.g., Lande, R., 1976 The maintenance of genetic variability by mutation

in a polygenic character with linked loci. Genet. Res. 26: 221–235.Goldstein and Holsinger 1992; Lythgoe 1997) or
Lande, R., 1983 The response to selection on major and minorenvironmental change (Bürger 1999; Waxman and

mutations affecting a metrical trait. Heredity 50: 47–65.
Peck 1999) may play an important role. Lyman, R. F., F. Lawrence, S. V. Nuzhdin and T. F. C. Mackay,

1996 Effects of single P element insertions on bristle numberWe thank James Crow, John Maynard Smith, and Adam Eyre-Walker
and viability in Drosophila melanogaster. Genetics 143: 277–292.for helpful discussions and the two anonymous reviewers for useful

Lynch, M., 1988 Design and analysis of experiments on random
suggestions. This research was supported by the Biotechnology and drift and inbreeding depression. Genetics 120: 791–807.
Biological Sciences Research Council (United Kingdom) under grant Lynch, M., and B. Walsh, 1998 Genetics and Analysis of Quantitative
85/G11043 and by the University of Sussex under its Graduate Teach- Traits. Sinauer Associates, Sunderland, MA.
ing Assistantship Scheme. Lythgoe, K. A., 1997 Consequences of gene flow in spatially struc-

tured populations. Genet. Res. 69: 49–60.
Mackay, T. F. C., R. F. Lyman and M. S. Jackson, 1992 Effects of P

element insertions on quantitative traits in Drosophila melanogaster.
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restricted to a � 2, 3, 4, . . . since the mean of g(x) CV(v)/√n with CV2(v) � [v2 � v2]/v2. Higher mo-
vanishing results in M1 always being zero]. A straightfor- ments are also controlled by the factor 1/√n but, as
ward calculation, using F(x) � �n

i�1(ci/√vi)g(x/√vi), might be expected, these become noisier: The fractional
yields error on Ma is of order CV(va/2)/√n and CV(va/2) gener-

ally grows with a.(Ma � Ma)2

(Ma)2
�

va � (va/2)2

(va/2)2
�
n

i�1

c 2
i .

APPENDIX B
We have ci � 2�i/U and U � 2�n

i�1�i so �n
i�1ci � 1 and

Here, we show the general validity of the inequalityassuming mutation rates at the n loci do not have a

 � 
0 that relates the kurtosis of the distribution oflarge amount of variation, this indicates that a typical
mutant trait effects, 
, and the kurtosis associated withci is roughly 1/n. Thus we have the estimate �n

i�1 c 2
i �

the distribution of mutant effects at a single locus, 
0 �n � (1/n)2 � 1/n so
(�y4g(y)dy)/(�y2g(y)dy)2, when there is variation only in
the mutational variances and no other parameters.(Ma � Ma)2

(Ma)2
�

1
n

va � (va/2)2

(va/2)2 To prove the inequality for the distribution F(x) �

�n
i�1(ci/√vi)g(x/√vi), we note that it has a mean of zero

and this leads to the estimate [because g(y) is even] and its second and fourth
moments are �∞

�∞x2F(x)dx � �n
i�1civi�∞

�∞y2g(y)dy,
�

∞

�∞
xaF(x)dx � Ma � Ma � �1 �

1

√n

va � (va/2)2

(va/2)2
�. �∞

�∞x4 F(x)dx ��n
i�1civi

2�∞
�∞y4g(y)dy. Thus its kurtosis is

Thus the fractional error on Ma is controlled by the

 �

�
∞

�∞
x4F(x)dx

��
∞

�∞
x2F(x)dx�

2 �
�n

i�1civi
2�

∞

�∞
y4g(y)dy

��n
i�1civi�

∞

�∞
y2g(y)dy�

2 � �n
i�1civi

2

(�n
i�1civi)2


0.factor 1/√n and F(x) can be thought of as self-averaging;
its typical behavior is similar to that of its average over
v and in Figure 1 we illustrate this. As an example, It follows that
consider the variance of x. We have





0

� 1 � �n
i�1civi

2 � (�n
i�1civi)2

(�n
i�1civi)2M2 � M2 � �1 �

1

√n 
v 2 � v 2

v 2 �
and the right-hand side of this equation is always nonnega-
tive, hence generally, i.e., with no approximation, 
 � 
0.and the fractional error on the variance is of order


